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Abstract

Cables used in engineering applications may undergo large displacement motion when subjected
to dynamic loads, particularly for cables with relatively low tension. As cables are much weaker in the
out-of-plane motion than the in-plane motion, three-dimensional dynamic analysis is often necessary even
when the excitation contains only a small out-of-plane component. This paper presents the dynamic
analysis of three-dimensional cable motion, accounting for axial, flexural and torsional deformations as
well as geometric non-linearity due to large displacements and rotations. The comprehensive study covers
analytical formulation, numerical strategy based on an iterative finite difference scheme, and experimental
verification by means of shaking table tests. A specific problem of cable motion due to support excitation is
used to illustrate the asymmetry and sensitivity of the dynamic tension response associated with geometric
non-linearity of large displacement cable motion. The shaking table tests validate the accuracy of the
numerical results obtained for both two-dimensional and three-dimensional cases.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Widely used in many engineering applications, cables often serve as load bearing elements and
supports for cable suspended systems and other structural applications such as guyed masts and
towers. Cables are typically load adaptive and thus behave non-linear geometrically in general.
Typically made of elastomeric material and circular cross-section, cables experience relatively high
tension, for instance, in cable-stayed and suspension bridges. If the sag ratio is small, the
equilibrium shape can be approximated by a parabola and simplified analysis by linear theory can
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be applied due to the relatively small displacement motion. Extensive research has been carried
out on static and dynamics analysis of high-tension cables for several decades, see e.g., Refs. [1–7].
Cables can also be used for purposes other than load bearing. For example, they can be used for

transmission of power and signal, and in the form of hoses, fluid and solid particles (e.g., cement).
The other type of application is to provide a compliant system to restrain motion, such as
underwater cables and mooring lines in offshore and marine engineering. For non-load bearing
applications, cable tension is relatively low. Under the effects of dynamic excitation, large
amplitude motion occurs due to small restoring force. Geometric non-linearity becomes dominant
and conventional linear analysis that assumes small displacements is actually not appropriate [8].
From computational point of view, low-tension cables pose a greater challenge than high-

tension cables particularly for dynamic analysis. For practical reasons such as study of fatigue
under repeated oscillations and control of large displacement motion, this subject has received
increasing attention in recent years [9–14]. Flexural stiffness plays an important role in low-
tension cable dynamics, without which singularity arises as numerical algorithms may become
unstable when the tension approaches zero anywhere along the cable [9]. A very recent study on
cable dynamics also shows that ignoring flexural stiffness gives rise to unacceptable errors in
predicting high-order natural frequencies [15]. For numerical stability and accuracy reasons, the
effects of flexural stiffness are taken into account in the formulation even though bending moment
is normally small for cables.
While most research papers reported only numerical studies, Koh et al. [14] developed a

modified box scheme suitable for large displacement dynamics of cables with both numerical
simulation study and experimental verification. Furthermore, in addition to displacement profile,
this reference studied cable tension in details. While it is relatively easy to obtain good numerical
results for displacement, the computation of cable dynamic tension is an order higher and requires
special care in order to avoid spurious high-frequency modes [14]. The theoretical formulation
and the modified box scheme, which were presented in Ref. [14] to give good results for both
displacement and tension in two-dimensional (2-D) problems, are extended herein to deal with
three-dimensional (3-D) problems. Furthermore, it is desirable to authenticate the numerical
scheme by comparing with experimental results. An experimental verification study is thus
performed by using a shaking table to produce support excitation to a single-span cable.

2. Theoretical formulation

Fig. 1 shows a differential segment of the cable in the global (X1;X2;X3) co-ordinate system, X3

being the vertical axis. The tangent line of the cable segment makes an angle y to the horizontal
X12X2 plane, and its projection on the horizontal plane makes an angle a to the X1 axis. These
two angles are chosen as they bear physical meanings particularly with regards to gravity
load, instead of an alternative of defining angles with the three axes by directional cosines. y may
be referred to the ‘‘vertical’’ angle as it measures the angle in the vertical (gravity) plane, whereas a
is the ‘‘horizontal’’ angle in the horizontal (non-gravity) plane. The position vector is denoted as
r ¼ ðX1;X2;X3Þ

T: The cable force and moment vectors are expressed as, respectively, p ¼
ðp1; p2; p3Þ

T and m ¼ ðm1;m2;m3Þ
T:
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The following practical assumptions are made in the formulation:

1. The cable material is homogeneous and isotropic with Young’s modulus E; shear modulus G
and density r:

2. Even though the cable displacement and rotation may be large (mainly due to low flexural
stiffness), the strain is small and thus the material constitutive relation remains linearly elastic.

3. Plane section of cable remains plane after deformation.
4. Transverse shear deformation and rotary inertia effects are negligible, whereas axial, flexural
and torsional deformations are all included.

5. The cable is circular in cross-section and thus symmetric about the cable axis, with d; A; I and J
being the diameter, cross-sectional area, moment of inertia of area and polar moment of inertia
of area, respectively.

2.1. Static analysis

The static configuration of cable under the self-weight and given boundary conditions has to be
obtained first and used as initial condition for the dynamic analysis. To derive the governing
equations, kinematics, equilibrium and constitutive conditions are imposed.
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Fig. 1. A differential segment of cable: (a) 3-D illustration; (b) plan view.
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Let ds and ds0 be the original and deformed lengths, respectively, of the differential element as
shown in Fig. 1. In terms of the angles y and a defined earlier, the following kinematics relations
can be obtained:

dX1

ds
¼ ð1þ eÞ cos y cos a; ð1Þ

dX2

ds
¼ ð1þ eÞ cos y sin a; ð2Þ

dX3

ds
¼ ð1þ eÞ sin y; ð3Þ

where e is the axial strain given by

e ¼ ðds0 � dsÞ=ds: ð4Þ

For equilibrium, the following three equations can readily be written:

dpi

ds
¼ r A g di3 � fið1þ eÞ i ¼ 1; 2; 3; ð5Þ

where fi denotes the applied force (if any) per unit length in the ith direction. In addition, the self-
weight is accounted for in the vertical X3 direction with g being acceleration due to gravity and d
denoting Kronecker delta function. Moment equilibrium is achieved by

dm� dr� p ¼ 0 ð6Þ

leading to three equations as follows:

dmi

ds
¼ pj

dXk

ds
� pk

dXj

ds
; ð7Þ

where i; j and k take different values of 1, 2 and 3 in permutation.
For constitutive equations, the following two moment-curvature relations can be derived:

dy
ds

¼
1

EI
ðm1 sin a� m2 cos aÞ; ð8Þ

da
ds

¼
1

EI
ð�m1 sin y cos a� m2 sin y sin aþ m3 cos yÞ: ð9Þ

When the cable undergoes out-of-plane motion, torsion is induced in general and has to
accounted for (unlike in the 2-D case). Torsion can be computed from the three components of m;
and its constitutive equation with respect to the twist angle,f; is

df
ds

¼
m1 cos y cos aþ m2 cos y sin aþ m3 sin y

GJ
: ð10Þ

The constitutive equation between the axial force and axial strain is simply

e ¼
T

EA
; ð11Þ
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where T is the cable tension and can be obtained from p as follows:

T ¼ p1 cos y cos aþ p2 cos y sin aþ p3 sin y: ð12Þ

2.2. Dynamic analysis

For dynamic analysis, it is more convenient to use velocity than displacement as the kinematic
unknown. The associated kinematic equations are obtained by differentiating Eqs. (1)–(3) with
respect to time, t: Let vi ¼ @Xi=@t be the velocity component in the corresponding direction.
Accounting for inertia and damping forces, equilibrium Eq. (5) becomes

@pi

@s
¼ rAgdi3 � fið1þ eÞ þ rA

@vi

@t
þ cvi i ¼ 1; 2; 3: ð13Þ

Damping effect is taken into account by adopting equivalent viscous damping with the same
damping coefficient, c; in all three directions. Since rotary inertia is neglected, moment
equilibrium Eq. (7) is still applicable except that ordinary derivative d=ds is now replaced by
partial derivative @=@s since there are two independent variables (s and t). Similarly, the
constitutive relations remain the same as in the static analysis given by Eqs. (9)–(11), except for
the use of partial derivative @=@s where appropriate.
Consider a single-span cable of length L: The following dimensionless variables are introduced

for convenience:

%s ¼
s

L
; %Xi ¼

Xi

L
; %vi ¼

viffiffiffiffiffiffi
gL

p ; %t ¼
tffiffiffiffiffiffiffiffi
L=g

p ; %pi ¼
pi

EA
; %mi ¼

%miL

EI
;

%fi ¼
fiL

EA
; %r ¼

rgL

E
; %c ¼

cL
ffiffiffiffiffiffi
gL

p
EA

; l ¼
Lffiffiffiffiffiffiffiffiffi
I=A

p ; k ¼
EI

GJ
:

There are a total of 12 unknown variables and they can be collected in the following
dimensionless vector:

u ¼ f %v1 %v2 %v3 y a f %p1 %p2 %p3 %m1 %m2 %m3 g
T: ð14Þ

The 12 equations required are the three velocity kinematics equations, two moment-curvature
relations, one torsion-twist relation and six equilibrium equations as discussed earlier. Where the
axial strain (e) appears in these equations, Eqs. (11) and (12) are invoked. The resulting governing
equations are non-linear first order partial differential equations in time and space. In view of the
fact that the finite difference method will be used in conjunction with an iteration scheme to solve
the non-linear equations, it is advantageous to express the 12 governing equations in the following
matrix form:

@u

@%s
¼ A

@u

@%t
þ B; ð15Þ

where matrix A contain mostly zeroes, and the non-zero elements are explained in Appendix A.
Vector B can be split into two vectors as shown in the next section, for numerical efficiency
reason.
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3. Numerical solution strategy

The governing equations for large displacement cable motion are highly non-linear and
coupled. Analytical solution is impossible to obtain and numerical approximation becomes
necessary. Among the various numerical methods applied to cable dynamics, the finite difference
method and the finite element method are commonly used. The former approximates the
differential equations governing the continuum (cable) by a finite number of difference equations,
whereas the latter discretizes the continuum physically into a finite number of elements. In
practice, each method has its merits and limitations [13,14]. In this paper, the finite difference
method is adopted. In particular, the modified box scheme has been shown to give good numerical
results for cable displacement and tension for 2-D problems [14]. Though a more general finite
difference method, called the generalized-a method, has recently been proposed, there is
apparently no clear approach to optimally choosing the parameters required [13].
More importantly, the numerical results obtained by the modified box scheme have been

verified by a cable ‘‘free fall’’ experiment involving low tension and large displacement motion
[14]. Besides, a detailed investigation of dynamic tension was presented in addition to the usual
study of displacement profile. This scheme is thus extended in this study to large displacement
cable motion in the 3-D context.
The modified box scheme uses the backward difference method in the time domain and the

trapezoidal rule in the space domain. The scheme is implicit and unconditionally stable.
Compared with the original box scheme, the modified box scheme has been found to give more
stable and more accurate results. Even though the original box scheme is supposedly an order
higher in accuracy, it produces results in cable tension containing high-frequency oscillations, the
frequency of which increases with decrease in time step [14]. In contrast, the modified box scheme
does not have the problem of spurious high-frequency oscillations.
Consider a grid point (i; j) of the modified box scheme at time %ti ¼ i D%t and spatial distance

%sj ¼ j D%s; where D%t is the time step and D%s the spatial step. Applying the backward difference
operator to Eq. (15) in the time domain gives

@u

@%s

� �
iþ1

¼ Aiþ1
uiþ1 � ui

D%t
þ Biþ1: ð16Þ

Use of the trapezoidal rule in the space domain leads to

uiþ1;jþ1 � uiþ1;j

D%s
¼
1

2
ðCi;jþ1 þ Ci;jÞ; ð17Þ

where

Ci;j ¼ Aiþ1;j
uiþ1;j � ui;j

D%t
þ Biþ1;j: ð18Þ

Eq. (17) can be rewritten as

Pi;juiþ1;jþ1 þQi;juiþ1;j ¼ Ri;j; ð19Þ
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where

Pi;j ¼ I�
1

2

D%s
D%t
Aiþ1;jþ1; ð20Þ

Qi;j ¼ �I�
1

2

D%s
D%t
Aiþ1;j; ð21Þ

Ri;j ¼ �
1

2

D%s
D%t

ðAiþ1;jþ1ui;jþ1 þ Aiþ1;jui;jÞ þ
D%s
2
ðBiþ1;jþ1 þ Biþ1;jÞ ð22Þ

and I is an identity matrix. To solve the non-linear equations, Newton–Raphson’s method may be
adopted which has an advantage of quadratic convergence rate when near the correct solution.
This approach has been used in cable dynamic problems; see e.g., Refs. [11,16,17]. A drawback
is that it requires the computation and storage of the Jacobian matrix at each time step. If
the system size is large, the convergence would be slow especially when the equations are highly
non-linear.
Alternatively, an iterative approach can be adopted. To expedite the numerical convergence,

vector B on the right-hand side of Eq. (19) is split into two vectors as follows:

B ¼ #BðuÞ þ *B: ð23Þ

The first vector #B is a function of unknown variables and can be shifted to the left-hand side of
Eq. (19), while the second vector *B remains on the right-hand side. The non-zero elements of these
two vectors are given in Appendix A. Good initial guess is generally needed for the iterative
approach to work, but this is not a hindrance here since static analysis would provide accurate
initial values. This approach has been shown to be computationally faster than using Newton–
Raphson method in solving 2-D cable dynamics problems [14].
Substituting Eq. (23) into Eq. (19) and rearranging the terms results in the following matrix

equation at a typical grid point:

#Pi;juiþ1;jþ1 þ #Qi;juiþ1;j ¼ #Ri;j; ð24Þ

where

#Pi;j ¼ I�
1

2

D%s
D%t
Aiþ1;jþ1 �

D%s
2

#Biþ1;jþ1; ð25Þ

#Qi;j ¼ �I�
1

2

D%s
D%t
Aiþ1;j �

D%s
2

#Biþ1;j; ð26Þ

#Ri;j ¼ �
1

2

D%s
D%t

ðAiþ1;jþ1ui;jþ1 þ Aiþ1;jui;jÞ

þ
D%s
2
ð *Biþ1;jþ1 þ *Biþ1;jÞ: ð27Þ
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Discretizing the cable into n segments and applying Eq. (24) at j ¼ 0; 1; 2;y; n � 1 for the
whole cable yields the following banded matrix equation:

#Qi;0
#Pi;0 0

0 #Qi;1
#Pi;1 0

y

y

0 #Qi;n�1
#Pi;n�1

2
66666664

3
77777775

uiþ1;0

uiþ1;1










uiþ1;n

2
6666666664

3
7777777775
¼

#Ri;0

#Ri;1






#Ri;n�1

2
66666664

3
77777775
: ð28Þ

At each time step, the above system contains a total of 12n equations and 12ðn þ 1Þ unknowns.
Thus, 12 boundary conditions are necessarily imposed to solve the equation system. A flow chart
showing the major steps of the numerical procedure is presented in Fig. 2. This study addresses
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the dynamic response of cable excited by support motion, which is a challenging task. Methods
that are used to analyze cables with stationary supports are not necessarily applicable to cables
with moving supports [18]. The boundary conditions would clearly depend on the fixity of the two
cable ends (e.g., pinned versus fixed end) as well as whether the supports are stationary or moving.
Six boundary conditions can be obtained at each end and these will be illustrated in Section 4 for
the problem considered.

4. Cable motion due to support excitation

As an example to illustrate the proposed formulation and numerical scheme, a moving support
problem is considered. Consider a cable with both ends pinned at the same level. Let D be the
horizontal distance between the two ends. The cable is subjected to its self-weight and no other
forces. The static solution can readily be obtained and then used as the initial condition for
dynamic analysis.
As shown in Fig. 3, the cable plane at the ‘‘at-rest’’ position makes an angle a0 with the X12X3

plane. Thus, a ¼ a0 along the whole cable before motion begins. One supporting end (A) of the
cable is stationary, while the other supporting end (B) undergoes a prescribed motion in the X1

direction. In the experimental verification study, shaking table is used to provide the support
motion and the pin end condition used is illustrated in Fig. 4. At these cross-sections, the bending
moments about the local horizontal and vertical axes, viz., mxx and myy respectively, are zero. It is
assumed that the pins physically prevent twist at both ends, but this does not necessarily mean
that there is no twist elsewhere along the cable. The corresponding boundary conditions are
adopted in the numerical study. Thus, at the stationary end A (%s ¼ 0), the following six boundary
conditions are imposed:

%v1 ¼ %v2 ¼ %v3 ¼ 0; f ¼ 0; %mxx ¼ 0; %myy ¼ 0; ð29Þ

where %mxx and %myy are the local bending moments in dimensionless form. They are related to the
moments defined in the global co-ordinate system as follows:

%mxx ¼ %m2 cos a� %m1 sin a; ð30Þ
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%myy ¼ %m1 sin y cos aþ %m2 sin y sin a� %m3 cos y: ð31Þ

The boundary conditions at the moving end B (%s ¼ 1) are similar to end A, except that v1 is
derived from the prescribed support motion. The displacement function for the support motion
and the corresponding velocity function are given in Table 1. The support remains at-rest for the
first 5 s for warming up of the shaking table in the experiment. Subsequently, there is a rise phase
of 5 s before reaching a steady state of sinusoidal motion at 1Hz and amplitude of 30mm for 10 s.
This is followed by a decay phase of 5 s to zero support motion. The displacement time history of
the support motion is shown in Fig. 5.
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Table 1

Displacement and velocity for support motion

Phase Time, t (s) Displacement (mm) Velocity (mm/s)

At rest 0–5 0 0

Rise 5–10 0:2t0f1ðt0Þ 0:2½f1ðt0Þ þ tf2ðt0Þ�
Steady state 10–20 f1ðt0Þ f2ðt0Þ
Decay 20–25 0:2ð202t0Þf1ðt0Þ 0:2½ð202t0Þf2ðt0Þ2f1ðt0Þ�

Note: f1ðt0Þ ¼ 30 sinð2pt0Þ; f2ðt0Þ ¼ 60p cosð2pt0Þ; and t0 ¼ t � 5:
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The dimensions and properties of the rubber cable used are: L ¼ 1:2m, d ¼ 25mm,
r ¼ 1430 kg/m3, E ¼ 59MPa (determined from a material tensile test in small strain range) and
viscous damping ratio x ¼ 6:2% (determined from a cable pull-back test). The damping
coefficient (c) is computed from the following formulae [5]:

c ¼ 2x
ffiffiffiffiffiffiffiffiffiffi
EAr

p
: ð32Þ

4.1. Numerical simulation study

The choice of time step and spatial step will influence the accuracy and efficiency of the
numerical scheme. After some convergence study, it is found appropriate to use Dt ¼ 8ms and
Ds ¼ 30mm. The latter means that there are 40 segments and 41 nodes (including the two
supporting ends) in the numerical model.

4.1.1. Two-dimensional problems

First, numerical simulation study is carried out for 2-D problems, by setting a0 ¼ 0: The
horizontal velocity at the mid-span and the dynamic tension (i.e. without the static component) at
a distance of 60mm from the stationary end are studied. Since the support motion is in the same
plane containing the initial cable profile, no out-of-plane motion takes place. While keeping the
same cable length (L), three values for the at-rest horizontal distance between the two ends are
considered: D ¼ 1:15; 1.16 and 1.17m, to study the effect of the sag ratio (i.e., sag/cable length).
The corresponding sag ratios are 0.124, 0.111 and 0.0967. The numerical results for the horizontal
velocity at the mid-span are presented in Fig. 6. It can be seen that the velocity is not sensitive to
small change in the sag ratio and is fairly symmetrical in the positive and negative directions.
Nevertheless, the same cannot be said for the tension response. The dynamic tension at 30mm
from the stationary end is presented in Fig. 7. The numerical results show that the dynamic
tension increases as the distance between the supports increases. This is because, for a smaller sag
ratio, the cable is in a tauter state and any movement would cause a higher change in tension than
in the case of larger sag ratio.
Geometric non-linearity is also manifested in the non-proportional increase in the dynamic

tension. The increase in the maximum dynamic tension is about two times when the distance
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increases by 10mm from 1.15 to 1.16m. But the increase is about 10 times when
the distance increases by the same amount from 1.16 to 1.17m. Furthermore, it
can be seen that the dynamic tension response is asymmetric about the zero axis that
corresponds to the at-rest position (static response). This is not surprising in view of the
geometric non-linearity as explained in Fig. 8, where a denotes the amplitude of the imposed
support motion. The figure clearly shows that the cable profiles in extreme position 1
(of relatively high sag) and extreme position 2 (low sag) are not symmetric with respect to the
at-rest position.
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4.1.2. Three-dimensional problems
Next, 3-D dynamic analysis is conducted for several values of a0: The horizontal distance

is fixed at D ¼ 1:16m. Two examples of a0 at 35
 and 90
 in plan view are illustrated in Fig. 9.
Out-of-plane motion is obviously induced. As an example of velocity presentation, the three
components of the cable mid-span velocity are presented in Fig. 10 for the case of a0 ¼ 35
: The
velocity is fairly symmetric with respect to zero. This is also true for the displacement response
(obtained by numerical integration of velocity) at the mid-span, as presented in Fig. 11. But again
the dynamic tension is not so, as will be shown later for both numerical and experimental results
(Fig. 15).
The amplitude of support motion is effectively a cos a0 in the plane of cable and a sin a0 out of

plane as illustrated in Fig. 9. Hence, the larger value of a0 is, the smaller the in-plane motion is.
The converse is true for the out-of-plane motion. Since the tension is mainly due to the in-plane
motion, it is expected that the dynamic tension should decrease with an increase in a0: This is
confirmed by the numerical results in Fig. 12 which presents the maximum dynamic tension as a
ratio to the 2-D result (at a0 ¼ 0). The trend curve is obtained by fitting a cubic polynomial to the
results. The dynamic tension of cable remains relatively unchanged when a0 is small (o10
).
Beyond the small angle range, the dynamic tension decreases considerably with increasing a0:

4.2. Experimental verification study

To validate the numerical model and scheme, an experimental study is performed by means of a
shaking table of size 1m� 1.5m. As illustrated in Fig. 13, two steel C-channel columns are used to
support the two ends of a single-span cable. One of the columns is bolted to the shaking table and
the other to strong floor. The full length of the cable is 1.250m. But between the two pin supports,
the cable length is 1.200m and the at-rest horizontal distance is 1.160m. Each end of the cable has
a small hole for insertion of a threaded bolt. As shown in Fig. 14(a), two nuts are used to prevent
sideway sliding of cable along the bolt (particularly arising from the out-of-plane motion).
Lubrication oil is added between the nuts and the cable to minimize friction. The dimensions and
properties of the rubber cable used in the experimental study are the same as those used in the
numerical study presented earlier.
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The close-up view in Fig. 14(a) also shows some of the strain gauges used to measure the
strains. The measurement of strains is at a distance of 60mm from the stationary end, which
corresponds to the third node in the numerical model. This measurement point is chosen near the
stationary end in order to minimize the movement effects of electrical wires attached, but not too
near the pin hole to avoid stress concentration zone. A total of four strain gauges are attached to
the cable in a symmetrical manner, as shown in Fig. 14(b). To measure only the dynamic effect
due to support motion, all strain gauges are initialized to zero prior to the activation of
the shaking table motion. The signals are transmitted via a dynamic strain meter to a digital
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oscilloscope for display and storage. The average of the four strains is then multiplied by Young’s
modulus of cable to obtain the dynamic tension.
For the shaking table tests, two horizontal angles are considered: a0 ¼ 0 (2-D) and a0 ¼ 35


(3-D). The latter value for the 3-D case was chosen mainly to satisfy the constraints of limited bolt
holes available on the shaking table and strong floor for supporting the columns. The input
motion as described earlier (Table 1) is imposed to the shaking table in the direction as shown in
Fig. 13. The experimental results for the dynamic tension at the steady state are presented in
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Fig. 15. These results are in good agreement with the numerical results for both the 2-D and 3-D
cases, and the errors in terms of the maximum value are less than 10%. The theoretical
formulation and numerical scheme presented are hence validated.

5. Conclusions

This paper deals with large displacement cable motion in the 3-D framework. The governing
equations are formulated as non-linear first order partial differential equations, taking into
account axial, flexural and torsional deformations as well as geometric effects. The modified box
scheme, previously developed and verified experimentally (with a cable free-fall problem) for 2-D
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cable dynamics, and an iterative procedure for solving the non-linear equations are extended to
3-D cable dynamics problems. A specific problem of cable motion due to support excitation is
used to illustrate the numerical scheme and studied experimentally. The following conclusions
may be drawn from the research findings presented.

1. The numerical results show that, while the cable velocities do not differ significantly for slightly
different sag ratios, the cable dynamic tensions do.

2. In view of the above point and previous finding in Ref. [14] that two different numerical
schemes may predict approximately the same cable profile but vastly different results for
dynamic tension, it is important to study cable tension (in addition to cable displacement and
velocity) in selecting an appropriate numerical scheme.

3. The dynamic tension response is asymmetrical with respect to the static response even when the
cable is subjected a symmetrical support motion. The response asymmetry is due to geometric
non-linearity associated with varying sag ratios induced by the support motion in the positive
and negative directions.

4. The shaking table tests conducted authenticate the accuracy of the numerical results obtained
by the modified box scheme for both 2-D and 3-D cases.

Appendix A

A is a matrix of size 12� 12 with the following non-zero elements:

A1;4 ¼ � sin y cos a� %p1 sin 2 y cos2 a� 0:5 %p2 sin 2 y sin 2 aþ %p3 cos 2 y cos a;

A1;5 ¼ � cos y sin a� %f1 cos
2 y sin 2 aþ %f2 cos

2 y cos 2 a� 0:5 %f3 sin 2 y sin a;

A1;7 ¼ cos2 y cos2 a; A1;8 ¼ 0:5 cos2 y sin 2 a; A1;9 ¼ 0:5 sin 2 y cos a;

A2;4 ¼ � sin y sin a� 0:5 %p1 sin 2 y sin 2 a� %p2 sin 2 y sin
2 aþ %p3 cos 2y sin a;
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A2;5 ¼ cos y cos aþ %p1 cos
2 y cos 2 aþ %p2 cos

2 y sin 2 aþ 0:5 %p3 sin 2 y cos a;

A2;7 ¼ 0:5 cos2 y sin 2 a; A2;8 ¼ cos2 y sin2 a; A2;9 ¼ 0:5 sin 2 y sin a;

A3;4 ¼ cos yþ %p1 cos 2 y cos aþ %p2 cos 2 y sin aþ %p3 sin 2 y;

A3;5 ¼ �0:5 %p1 sin 2 y sin aþ 0:5 %p2 sin 2 y cos a; A3;7 ¼ 0:5 sin 2 y cos a;

A3;8 ¼ 0:5 sin 2 y sin a; A3;9 ¼ sin2 y; A7;1 ¼ A8;2 ¼ A9;3 ¼ %r;

#B and *B are both vectors of size 12 with the following non-zero elements:

#B4 ¼ m1 sin a� m2 cos a; #B5 ¼ �m1 sin y cos a� m2 sin y sin aþ m3 cos y;
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#B6 ¼ kðm1 cos y cos aþ m2 cos y sin aþ m3 sin yÞ; #B7 ¼ cv1; #B8 ¼ cv2; #B9 ¼ cv3;

#B10 ¼ l2ð1þ eÞð %p2 sin y� %p3 cos y sin aÞ; #B11 ¼ l2ð1þ eÞð� %p1 sin yþ %p3 cos y cos aÞ;
#B12 ¼ l2ð1þ eÞð %p1 cos y sin a� %p2 cos y cos aÞ;

*B7 ¼ � %f1ð1þ eÞ; *B8 ¼ � %f2ð1þ eÞ; *B9 ¼ %r� %f3ð1þ eÞ

where e ¼ %p1 cos y cos aþ %p2 cos y sin aþ %p3 sin y:
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